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In the present paper we thoroughly investigated the dynamics, kinetics, and the transport properties of the
one-dimensional (1D) mass-disordered lattice of harmonic oscillators with the number of particles N < 5000.
The thermostat is simulated by the Langevin sources. Our method is adequate to any 1D lattice with linear
equations of motion. Two accurate methods to calculate the temporal behavior of pair correlation functions
were developed. The feature of the considered disordered model is an existence of localized states with great
relaxation times 7 to their stationary states. The exponential growth 7ocexp(N) is observed. A method which
allows us to extend the range of computed relaxation times up to 7==10°% is suggested. The stationary state is
unique. The thermal conduction » has the nonmonotonic character versus N: for the number of particles N
<300 the thermal conduction increases as »In N and reaches the maximal value at N=300. At larger values
the decreasing asymptotic is observed: x> N~%, and a~0.27. An influence of parameters on the calculated
properties was analyzed. Mathematical problems associated with the computation of very large times of

establishing the stationary states were extensively studied.
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I. INTRODUCTION

At present, many studies are focusing on the studies of
statistical and transport properties of low-dimensional sys-
tems [1,2]. Besides the obvious achievements there are a few
unresolved problems; e.g., does the unique stationary state
really exist? If this state exists, then what is the relaxation
time to its stationary state? What are the sufficient conditions
for the observation of the finite value of the thermal conduc-
tion in low-dimensional systems?

The behavior of the thermal conduction x vs. the number
of particles N in the lattice and other parameters is also of
great importance. Interest greatly increased after the pioneer-
ing work [3], where it was demonstrated that the thermal
conduction diverges at the thermodynamical limit (N— )
for the lattice of nonlinear oscillators.

The diverging value of thermal conduction xxN* with
0.17< a=0.5 was also observed for some model systems in
the molecule dynamics (MD) simulations [4-7]. The final
value of thermal conduction was obtained for other models
[5,8-10], and, moreover, numerical simulations predict the
“phase transition” from normal to diverging thermal conduc-
tion when temperature and/or parameters of the systems
vary. However some of these results were criticized [11].
Theoretical estimations for a give values 2/5 [4,12,13] or
1/3 [14] depending on the chosen models.

Usually it is supposed that the nonintegrability is the nec-
essary but not the sufficient condition for the final value of
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the thermal conduction in the one-dimensional (1D) systems
[15]. Tt was demonstrated [4] that any 1D system with the
acoustical branch of excitation should have an infinite value
of » in the low temperature limit.

Many model lattices with different potentials of interac-
tion were investigated. Important qualitative and quantitative
results were obtained, though controversial conclusions were
made for the same model systems. These and associated
problems are thoroughly considered in the recent reviews
[1,2].

The existence of an anomalous energy diffusion in some
systems [16,17] was also found, where o(t)=2Dt?
(0<B=<2), and, moreover, the index f is related to « (in the
dependence x> N?) by a=2-2/8. More complex systems
were suggested and investigated for the heat rectification
[18] and the controlling of the heat flow [19-21].

The 1D lattices are very useful prototypes for the analyti-
cal and numerical investigation of kinetic, dynamical, and
transport properties of more complex and practically inter-
esting systems such as carbon nanotubes (see, e.g., [22-29]).

The problem of the dynamics of the disordered lattices
was formulated over 50 years ago by Dyson [30], who gave
the general formulation of the problem. Dyson’s problem
was chosen for the detailed investigation, in the present pa-
per, as this system meets some questions more or less com-
mon in the problem of thermal conduction in low-
dimensional systems.

The structure of the paper is as follows. Section II de-
scribes the model formulates of the basic equations for the
pair correlation functions. In our study we offer two methods
for the accurate calculation of dynamics (vibrational spec-
trum), kinetics (relaxation of vibrational states to their sta-
tionary values), and transport properties (heat flow) of the
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mass-disordered lattice of the harmonic oscillators. These
methods offer a clear and straightforward way to implement
the necessary calculations of the values of interest, and have
essential advantages in comparison with the MD simulations.
Localized states and their role in the thermal conduction is
considered in Sec. III. The results on the achievement of the
unique stationary state, with corresponding relaxation times,
the calculations of the stationary heat flow, and the thermal
conduction are presented in the same section. An influence of
the parameters values (choice of masses, “damping” 7 in the
Langevin forces, the different boundary conditions, and
properties of the Langevin thermostat) are discussed in Sec.
IV. Concluding remarks are made in Sec. V. Important math-
ematical details peculiar to the mass-disordered harmonic
lattice are considered in the three Appendixes.

II. THE MODEL AND THE METHOD

We consider the one-dimensional (1D) lattice of N har-
monic oscillators with distinct masses m(i) and equal force
constants. A paper where an analogous method was utilized
is the work in [31], but for clarity, we give the more simple
and advanced derivation of the main formulas.

The following dimensionless quadratic Hamiltonian

1 X 1Y
H == m(i)v?(i) + = > x()U(i,j)x(j) (1)
250 2i,j=1

corresponds to the considered harmonic lattice. In (1) v(i)
and x(i) are the velocity and displacement of the ith particle
from its equilibrium position. The matrix U(i, ;) for the near-
est neighbor interactions has the tridiagonal form

2 ifj=i
UGi,j)=4-1 ifj=ix1 (2)
0 in other cases.

In (2) the fixed boundary conditions are assumed for
the definiteness [for free boundary conditions U(1,1)
=U(N,N)=1]. The harmonic force constants in (1) are set to
1, my=1, and m,=1/2, and are randomly and equaprobably
distributed on the lattice.

For the evaluation of the thermal conduction it is reason-
able to use the local formulation of the Fourier law [2]

J=—xVT, (3)

and both the temperature profile 7(i) and heat flow J should
be determined. The stationary nonequilibrium conditions are
fulfilled by applying the temperature difference at the lattice
ends. [Note that the computation of thermal conduction in
equilibrium conditions according to the Green-Kubo formal-
ism [32] is unapplicable to harmonic lattices. The reason is
that the normal modes do not interact in the harmonic lat-
tices, and no “normal” behavior of the correlation function
(J(0)J(1)) could exists.]

The Langevin thermostat is often used to prescribe defi-
nite temperatures to extreme particles in the lattice, and this
thermostat allows us to make necessary calculus analytically.

We consider first the general case when the Langevin
sources affect all particles in the lattice. In this assumption
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the linear equations of motion have an especially simple
form

m(i)i(i) = [x(i = 1) = 2x(0) + x(i + D]+ [= Hd)v (i) + &0D)],

i=1,2,...,N, 4)

where the expression in the first set of square brackets, is
the harmonic interaction of ith particle with its nearest
neighbors, and the fixed boundary conditions mean x(0)
=x(N+1)=0. The term [-y()v(i)+&(i)] is the Langevin
force, where (i) is the “damping” coefficient, and &(i) is the
random force. In the final expressions it will be easy to con-
sider different partial cases by putting terms y(i)=£&(i)=0 for
some particles in the lattice.

Random forces obey standard relations (below for clarity,
we introduce an explicit dependence on time for operators
and functions)

(€51 E(312)) = 26,;0(t) — 1) V(i) T, (i), (5)

where T,(i) is an arbitrary temperature prescribed by the
Langevin source to the ith particle.

It is convenient to substitute N the second order equations
(4) by 2N of the first order equations

X)) =v(i),

(@) ={lx(i = 1) = 2x(0) + x(i + D] + [- ¥ () + &) [/m ().
(6)

Equations (6) provide the basis for the numerical MD simu-
lation.

It is useful to utilize the more compact matrix notations.
In order to do this we introduce the time-dependent vector of
state,

a()= (';8 J ~tatiny
=v(1;0),0(2;0), ..., v(N;1);:x(1:2),x(2;1), ... ,.x(N;1)

()

and it is convenient to rescale the random forces

&(isr) = E(is0)/m(i). (8)

Then system (6) can be rewritten as a matrix equation
. . E(
i) =Aq() + ( X )>, ©)

where Z(1)=&(1:1),&2;1), ..., &N;1)—N vector of random
forces and (2N X 2N) matrix A does not depend on time and

reads
. (-MT -M'U
A= R R . (10)
I 0

Matrix M(i, j)= &;/m(i) is the random diagonal matrix of par-
ticle masses and M~'—inverse matrix; I'(i,j)=6;9i) is the
diagonal matrix of damping coefficients in the Langevin
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forces. Matrix U is defined by (2). I and O—unit and null
matrices, correspondingly. Random matrix

A—non-Hermitian and its eigenvalues are complex values
(see, e.g., review [33]).

Our goal is to find the time dependence of pair correlation
functions

C(i.j:1) = {q(isnq(j;1),

where ¢(i;t) is defined by (7).

There are two basic methods of averaging in (11). The
first is to “take readings” from one “long” phase trajectory
and to make necessary averaging at different time instants.
This approach is suitable only for the stationary state. We use
an alternative approach where the averaging over the final
states at time ¢ is performed for a set of “short” trajectories.
The latter method is also suitable for the nonstationary states.
It can be demonstrated that the results of both methods co-
incide in the limit — oo (ergodic hypothesis).

The correlation function (11) can have the sense of tem-
perature, heat flow, and others. For instance, at time ¢ the
temperature and the heat flow through ith particle can be
found as

i,j=1,2,...2N, (11)

T(i)/m(i) = (*(i30)) = C(i,i31),

JGst) =A[x(is0) = x(i + 150 Ju(is )
=C(,i+N;t) - C(i,i+ N+ 1;1). (12)

The formal solution of Eq. (9) (with the initial condition
q(t=0)=0, i.e., all particles are at rest) is

q(1)= J drE W2(t - D é(p; ) (13)

where the superscript p numerates the Langevin sources, and
W is the evolution operator satisfying the equation
2N

= D A(i,m)WP(m;1),

m=1

dWP(i;t)

" WP(ist=0) = 5,

(14)

(The general case where g #0, i.e., Ty # 0, will be consid-
ered below.)
Vector W”(7) has the velocity and coordinate components

{{V”(i;t)} [=WP(isf) if i=1.2, ....N]

WP(t) = . e

{XP(i;0)} [=WP(i;0) if i=N+1,N+2,...,2N].
(15)

Being written in vector notation, Eq. (14) for the vector
W?(t) reads

XP(t)=VP(r), XP(i;t=0)=0,

MVP(1)=— UXP(0) - TVP(1), VP(i;r=0)=5,. (16)

Every vector W”(¢) describes the evolution of the considered
system with damping (but in the the absence of random
forces). At the initial moment r=0 and all particles are at rest
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except one, pth, with the velocity equal to unity.
Write now [keeping in mind the definition (13)] the ma-
trix of the correlation functions

C(i,j:t) = {q(i;Nq(j:1)

f deIde E W'(ist— ) WP(j;t — 1)

n,p=1

X(E(n; 1) E(p;m)). (17)

Using the expressions (5) and (8) for correlators of random
forces in the rhs of (17), we lastly get the desired expression
for the correlation functions

C(i,j:t) = E Y(pl(TL)(p)fthWP(i;T)WP(j;T). (18)
p=1

Our next goal is to construct and analyze the equations for
WP (1). The evolution equation

C(i,j;t)=f§é+ CA*+D, (19)

where

Dlij) = EMMP
p=1 (p)

is usually considered (see, e.g., [1,31]), and note that (19) is
the equation for ~2N? variables.

Now we limit ourself by two Langevin particles with tem-
peratures T7,(1) and Ty 4(N), and only two vectors W(¢) and
WV(t) are necessary to calculate the correlation function
(18). In this case expression (18) can be rewritten as

27TL (1)
m*(1)

(20)

C(i,jst) = f Wi, W' (j;dr

+2yTL (N)f WG WG Ddr. (21)

Below we shall demonstrate that even one Langevin particle
is sufficient to obtain necessary physical results in the limit
t— . Indeed, let us change temperatures of two extreme
particles in the same manner: Ty ,(1) — Ty (1) +AT, Ty 4(N)
— T o(N)+AT. The change of the correlation function
AC(i,j;t=2°) in (21) will have the form of a correlator for
equal temperatures AT at the lattice ends

AC(i,j;t =) f W' (i;DW'(j;Ddr

2(1)

2YAT (7 v
+ mz(N)fo WY W, ndT,  (22)

and it is evident that the change in heat flow is equal to O.
Because of the addictiveness of correlation functions on tem-
peratures of the Langevin particles [see (18)], one can (with-
out the loss of generality), put 7T 4,(N)=0 and choose
AT=~T4,(N) for this purpose. Thus, all correlators (18) can
be expressed through one vector W'(z).
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In a suggested approach only 2N entries of the vector
W(z) are sufficient to calculate the correlation function (18)
[but not ~2N? variables as in (19)]. One can perform the
calculations at a fixed choice of temperatures TLg(l)z 1. The
results for other temperatures can be easily obtained by the
linear rescaling. Note that this is valid only for the harmonic
systems.

At the usage of the MD simulation for one sample (by a
“sample” we hereafter understand the unique choice of mass
distribution in the lattice), it is necessary to numerically in-
tegrate many random trajectories defined by the different se-
quences of random forces to get the statistically reliable re-
sults. At the suggested approach, it is necessary to find only
one trajectory [the time dependence of the vector W!(z)].

Below we describe two approaches to solve Egs. (16).

A. “Direct” method (integration) for the calculation of
correlation functions

One should numerically (by, e.g., Runge-Kutta method)
solve the linear Cauchy problem (16) for vector W'(¢) of
length 2N (below we omit the superscript “1” for clarity).

The system of Egs. (16) can be complemented by the
differential equations for any values of interest. For example,
if temperature T(i;f) and the heat flow j(i;f) should be
known, then the following ordinary differential equations
[see (12)]:

dT(is))  2A1TL,(1)
i m*1)

m@[V'(i;0)],

dj(i;1)  2y(1)T,(1)
i m*1)

m(D[X' (i = 150 = X' (i:0]V' (i32)

(23)

should to be added to (16). This approach allows us to get all
values at time 7 [upper limit of numerical integration in (16)
and (23)]. But our main interest is to find the stationary val-
ues of the heat flow and temperature profile at r— .
Before describing the method, note an interesting fact ob-
served at the numerical integration of systems (16) and (23):
the heat flow at the right “cold” lattice end with 77 ,(1)=0
reaches its stationary state much faster as compared with the
left “hot” end with 77 ,(N)=1 (see Fig. 1). This phenomenon
has a simple explanation. The cold end just serves as a sink
for the heat flow, while at the hot end the energy is consumed
to the energy transport (thermal conduction) and to the exci-
tation of vibrational states. The heat flows at the right and
left ends coincide at the stationary state as it should be.
Thus, the computation of the heat flow is reasonable to
perform at the cold end of the lattice. The algorithm for the
computation of the heat flow by the direct numerical integra-
tion is the following: one gets few successive values (corre-
sponding to ascending time instants) and approximates them
by the power function J(¢)=J(%)—at”, its asymptotic value
being the approximation to the stationary state. The “sliding”
approximation technique was utilized using the last five
computed values. The criteria of reaching the true stationary
state is the stabilization of the parameters of the approximat-
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FIG. 1. The time dependence of the heat flows through the left
(crosses) and right (circles) extreme particles for a random sample
with N=2000. Triangles, sliding approximation calculated by five
latest time instants (see the text). Horizontal solid line, the
asymptotic value of thermal conduction J(r=20)=0.03178. The inset
demonstrates the power law (log;o[J()=J(r)] vs 1) for the right
heat flow.

ing curve (triangles in Fig. 1). At the comparatively small
times (1~ 10°) the heat flow reaches its stationary value in
the lattice with N=2000, and the sliding method greatly in-
creases the convergence.

One of the advantages of the suggested “direct” approach
of the computation of the heat flows consists in the necessity
to solve the system of only ~2N, Egs. (16) and (23), for only
one Langevin particle. Namely, this approach was utilized at
the calculations of thermal conductions of large lattices, and
the results are presented below in Fig. 11.

B. “Matrix”’ method for the calculation of correlation
functions

The other conventional approach to the solution of (18)
consists of its transformation to the eigenvalue problem. The
solution is searched as an expansion into a series in terms of

eigenvalues and eigenfunctions of matrix A (10).

Let us consider the eigenvalue problem for the relaxing
vibrational states (vibrations relax to their stationary states
because of the damping in Langevin forces)

AQy=NQ;. (24)

where A, is the kth eigenvalue, and the eigenvector Q is
evidently expressed through the (complex) amplitudes of the
kth normal vibrational mode X;: Q;={v;, X1} ={NX}. X}, X
=x;(1),%(2),....x5(N), and k=1,2,...,N (there are two
complex conjugated values for each kth vibrational mode).
Equation (24) is rewritten in coordinate components for
amplitudes of the kth vibrational state and has the form

- 02/{_)\](1:‘}/(=)\]%M}k’ (25)

and the complex value A, being the eigenvalue of operator A
can be written as
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)\k=— I/Tk+iwk, (26)

where real 7, and imaginary wy, are the relaxation time to the
stationary state and frequency, correspondingly. The values
A\, are not purely imaginary because the matrix A is non-
Hermitian and its eigenvalues are complex in the general
case. (The methods of solution of these matrix equations are
considered in [34].)

Expanding the vector W(z) into a series in terms of eigen-
vectors Q; one gets

2N

W(ist) = X c,O(D)exp(\et),

k=1

i=1,2,....2N.  (27)

The unknown expansion coefficients ¢, can be determined
from the linear system, obtained from (27) at r=0, and at the
initial condition W(i;t=0)=5;

2N

81 = 2 (). (28)

k=1

Substituting the expansion (27) into (18), one finally gets the
expression for the pair correlation function

2N
. 29T;,(1) exp[(\g, + N\ )] =1
Chjin== 50 = T
kypko=1

Xy, €3, Qx, ()9, () (29)

and the time dependence is found only in the exponent.

The correlation function C(i,j;7) allows us to get all
physical values at an arbitrary time f. The most interesting
stationary case (r— ) is obtained by putting to zero the
exponential phase multiplier and the fraction under a double
summation in (29) is reduced to —1/(N\; +)\,). Recall that
(29) is derived for only one Langevin particle with tempera-
ture T1,(1). The generalization for an arbitrary number of
Langevin sources is obvious: there will appear the sum over
the Langevin particles in accordance with the addictiveness
of the results on their number and temperatures. One can
check that (29) obeys Egs. (18) and (20).

The comparison of the MD simulation with both direct
and matrix methods demonstrates a very good accuracy: the
mean standard deviation does not exceed 2% at statistical
averaging over 100 MD trajectories. The better coincidence
is expected with increasing the number of MD trajectories.

Expression (29) is formally analytically accurate; but it
demands two numerical procedures: matrix diagonalization

of A (10) and the solution of linear system (28). Thus the
final accuracy of (29) is determined by the accuracy of the
corresponding numerical operations. For the details of the
calculation of eigenvalues and eigenvectors [Eq. (24)], and
expansion coefficients [Eq. (28)], see Appendixes A and B.

)\kl + )\kz

III. RESULTS AND DISCUSSION
A. Localized states

An important property of the considered lattice is the ex-
istence of localized vibrational states with eigenfrequencies
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0.4

Eigenvectors

0 20 40 60 80 100

Particle number

FIG. 2. Examples of vibrational states for a random sample with
N=100. Shown are two vibrational states of three different types:
mostly delocalized; mostly localized far from ends; and localized in
the vicinity of lattice ends. Imaginary parts of eigenvectors are
shown in dashed lines for the last type.

w;~ 1 and very small damping (very large relaxation times
7, of kth vibrational states to their stationary values). Analo-
gous localized states were discovered by Anderson [35] in
the diffusion problem (see, also, review [36]). Just the com-
putation of very large relaxation times is the main math-
ematical and computational problem of the considered har-
monic disordered lattice.

Different types of vibrational states give different contri-
butions to the thermal conduction and temperature profile. As
this takes place we consider the vibrational states in the dis-
ordered harmonic lattice.

As will be seen, the damping rate is determined by the
boundary values of vibrational modes; therefore it is reason-
able to classify the vibrational states by their amplitudes at
the extreme left and right Langevin particles of the lattice.

Three types of vibrational states can be distinguished:
first, long-wave acoustical vibrations with relatively large
amplitudes at extreme particles; second, vibrational states lo-
calized far from both ends of the lattice, with negligible am-
plitudes at extreme particles; and third, vibrational modes
localized in the vicinity of one end or the other end. These
three types of vibrational modes are illustrated in Fig. 2.

For delocalized states and states localized far from the
lattice ends their imaginary parts are much less compared to
real parts and are not shown in Fig. 2. The opposite case is
valid for the states localized close to one end or the other
end; real and imaginary parts are comparable by modulus
and are shown in Fig. 2.

The “map” of eigenvalues (frequencies) vs relaxation
times is shown in Fig. 3. It turns out that the least relaxation
times 7 have the states localized close to one end or the other
end of the lattice, and have the largest amplitudes at extreme
Langevin particles. One can see that these states have com-
parable imaginary (w) and real (7) parts. Localized regions
of points at small values of eigenvalues w in Fig. 3 corre-
spond to acoustical modes, and their frequencies behave as
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log, (@)

FIG. 3. The relationship between the eigenfre-
quencies w and relaxation times 7 for the lattice
of N=100 particles, M=20 samples. The vibra-
tional state localized at the left end is shown in
the inset. Dashed line, the imaginary part of the
eigenvector. The arrow shows the corresponding
point in the map.

log,4(7)

B. Maximal relaxation times to stationary states

It is convenient to determine the typical relaxation times
of vibrational modes to their stationary states through the
mean values of maximal relaxation times: for every sample
with given N we determine 7,,,; averaging over samples
gives its mean value (7).

The dependence of {(log; Tya ON the number of particles
N in the lattice is shown in Fig. 4. One can see the linear
dependence {102y Tmax) VS N, Toax <€xp(aN), where a=0.9.

The dependence shown in Fig. 4 also allows us to deter-
mine the range of the number of particles N, where all physi-

200

180 °e
160 -

140 -

25 3 3 40 45
10go{ Tmax)

<I°g10(1max)>
-
<
-3
I
55
3

0 100 200 300 400 500
N

FIG. 4. The dependence of the logarithm of mean maximal re-
laxation times on the number of particles N in the lattice. Solid
circles, calculated values; solid line, their linear approximation. Av-
eraging over 1000 samples. Inset: The distribution function for re-
laxation times for N=100 (5000 samples) and its approximation by
the normal distribution function.

cal values can be calculated exactly at achieving the true
stationary state. The lower horizontal line for =< 10'* limits
N=150, the upper horizontal line limits the range N =100,
where the relaxation times can be calculated exactly for
t=10% [see (A2) in Appendix A]. Note, that the accurate
MD calculations are possible only for r=<10° and hence,
N=25.

Earlier [1] there was made an assumption that the relax-
ation times grow exponentially with N. This dependence is
easily explained. If one of the localized state (having large
relaxation time) is located approximately in the middle of the
lattice, then the decreasing of its amplitude is exponential
with the distance from the center of localization. According
to (A2), relaxation times are proportional to squared ampli-
tudes of vibrational states at extreme particles. Thus, the ex-
ponential dependence 7,,,, Vs N is also evident.

C. Kinetics of the stationary temperature profile establishing

The stationary temperature profile can be achieved when
all vibrational modes reach their stationary values. But the
mass-disordered harmonic lattice has localized vibrational
states with very large relaxation times (see Fig. 4). The varia-
tion of the temperature profile vs time at different tempera-
tures of thermostats calculated according to (29) is shown in
Fig. 5. An extremely slow relaxation to the stationary tem-
perature profile in the central region of the lattice is ob-
served. Note that the temperatures in the vicinity of the lat-
tice ends reach their stationary states rather soon.

In Appendix C we shall demonstrate how the results of
the authors [37,38] for the stationary temperature profile can
be obtained from (29) in the limit y— 0.
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Temperature

0.4 T T T T

Particle number

FIG. 5. The change of the temperature profile vs time ¢ for the
lattice of N=50 particles (averaging over M=2000 samples). The
Langevin temperatures are Tyo,(1)=2 and 7j,(50)=1. Times
t=10%,10%,10*,r=c0 (thick solid line) for curves from down to up.
The calculations by “direct” and “matrix” methods do coincide.

D. The uniqueness of the stationary state

The uniqueness of the stationary state in the case of gen-
eral thermostats is still an open question [2]. But for the
Langevin reservoirs this problem is solved in favor of the
uniqueness of the stationary state. Indeed, it was demon-
strated in [39] by an analysis of the Fokker-Plank equation
and in [31,40], where an equation for the stationary correla-
tion equations was considered.

The uniqueness of the stationary state is proved in our
paper as we derived an accurate analytical expression ob-
tained without any assumptions. Our results are nothing else
than the solution of the linear Cauchy problem where no
bifurcations can be observed, and consequently the solution
is unique.

Earlier the question about the existence of the unique sta-
tionary state was discussed in [41] (the authors used the
Nosé-Hoover thermostat). There two results were estab-
lished: first, the temperature profiles are almost indistin-
guishable at times ¢t=10° and 107 (initial temperature,
T,=0.01); second, the temperature profile depends sensi-
tively on the initial conditions. The authors stated that the
negligible difference in the temperature profiles at =10° and
107 guarantees the existence of the stationary state. These
results initiated some discussion (see [40,42]).

We have investigated the same problem but with the
Langevin thermostat [43]. We found that this phenomenon
(stabilization of the temperature profile in some time range)
is also observed. We used the same parameters of the model
as in [41]: number and masses of the particles, boundary
temperatures, but slightly changed times—5X 10° and
5X10% A random sample (mass distribution of particles
with masses 1 and 1/2) was used. The difference in the used
initial temperatures (7,=0 in our work and T,=0.01 in [41])
is negligible.

We have supposed that the temporal deceleration estab-
lishing the temperature profile is observed in the time range
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FIG. 6. The spectrum of relaxation times of a random sample
with N=200. Inset: time range 10°—108% is shown in a larger scale.

where there is a gap in the spectrum of relaxation times. This
spectrum is shown in Fig. 6. One can see that the gap in the
spectrum does really exist in the time range of interest (from
t=5%X10° to 1=5 X 10°).

The temperature profiles are shown in Fig. 7 and they are
almost indistinguishable at times r=5X10° and ¢=5 X 10°
(compare with Fig. 4(a) in [41]). Time is necessary to
achieve the stationary state 7, for the mass-disordered har-
monic lattice with N=200 many orders of magnitude greater,
as is achieved in MD simulations and t,~ 10°°. Thus the
“stabilization” of the temperature profile in some time range
does not guarantee the existence of the stationary state, at
least with the Langevin thermostat.

We considered next the case when the initial state was
chosen from the Gibbs distribution corresponding to the ini-
tial temperature Ty=3, as in [41]. The Gibbs equilibrium
distribution was generated by applying the Langevin sources
with 7=3 to all particles of the lattice. It was checked that
time =107 (at y=1) is enough to establish the true stationary
state.

To consider the evolution of the system, starting from the
initial states with g,# 0 (7, # 0), we have to generalize our
expressions for the correlation functions of Sec. II. This can
be easily done; one should add the term

S8C(i,j1) = qo(i;0)qo(j;1) (30)
to the rhs of all expressions for the correlation functions in
Sec. II. The vector ¢, satisfies the equation

¢ =Aq where q,(1=0) =g, # 0. (31)

In the case of initial temperature 7=3, it is necessary to
average an expression ¢(i;1)qo(j;t) over the Gibbs distribu-
tion of initial vectors q,. The final expression for the additive
to the correlation functions (31) reads

&C(ij30)) = (@oli:g0(30)g,- (32)

The additives to temperatures are ST(i;1)=m(i){5C(i,i;t))
= m(i)(qz(i;t)>|q0 and are shown in Fig. 8.
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FIG. 7. (Color) The temperature profiles at times r=5 X 10> and
t=5X 10°. Upper (blue) solid line, true stationary temperature pro-
file at t=c0. The sample is the same as in Fig. 6. Tp,(1)=3 and
T1,(200)=2. To distinguish the two almost coinciding curves, the
colored curves are used.

The final additions to the temperatures in Fig. 8 will be
T(i;t=2)=0, i=1,2,...,N. Indeed, the temperatures in the
vicinity of both ends of the lattice are practically equal to
zero. It means that the modes with the least relaxation times
just relaxed to their zeros stationary states at t>5 X 10°.

The summation of temperature profiles in Figs. 7 and 8
gives the desired temperature profile at times =5 X 103 and
t=5X10° and at the initial temperature T,=3. The result is
shown in Fig. 9 ( compare with Fig. 4(a) in [41]). It is ap-
parent that at r— o0 the temperatures will have the values
shown in Fig. 7 as it is the unique stationary state at t— .

E. Calculation of the heat flow

For the computation of the thermal conduction we use an
expression for the stationary value of heat flow combining
(12) and (29)

5

— t=5x10°
—— t=5x10°

Temperature

0 T T T T T T T T T

0 20 40 60 80 100 120 140 160 180 200

Particle number

FIG. 8. (Color) The temperature profiles at times r=5 X 10> and
t=5%10°. Initial conditions at =0, the Gibbs distribution at
Ty=3. Averaging over 2000 initial vectors of state g,. The sample is
the same as in Fig. 6.
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FIG. 9. (Color) Temperature profiles at t=5x10°> and

=5 X 10° and the initial temperature T,=3. The sample is the same
as in Fig. 6. Ty ,(1)=3 and Ty 4,(1)=2.

29T ,(1) N Ck,Cr,

m*(1) o= My + M,

Jlist=2) =

X[X (1) = X (i + DIV (i + 1), (33)

We also utilize two other well known definitions for the cal-
culation of the stationary heat flow

J(t =)
A (T (1) =T(152=00)])/m(1) for the first particle
YI(N;t=)/m(N) for the Nth particle,
(34)

where T(1;t=%) and T(N;t=) stand for actual stationary
temperatures of the first and Nth particles. The coincidence
of values of heat flows obtained according to (33) and (34)
served the additional criterium of the accuracy of the com-
putations of the heat flow.

F. Contribution of different types of vibrational states to
thermal conduction

An existence of three types of vibrational states was as-
sumed above. Questions arose about their contributions to
thermal conduction and other properties of the mass-
disordered harmonic lattice.

Acoustical vibrations obviously give the main contribu-
tion to the thermal conduction. Actually, left Langevin par-
ticles (having higher temperature) excite acoustical modes
(because of nonzero amplitude at this particle) and carriy the
energy to the right particle, thus maintaining the thermal con-
duction. The contribution of vibrational states localized in
the lattice center is negligible as their coupling with thermo-
stat is very small.

Thus, acoustic delocalized states contribute to thermal
conduction, stationary temperature profile, and heat capacity.
Modes localized in the center do not participate in thermal
conduction at all, but in the limit 7— % contribute only to
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FIG. 10. The dependence of the heat flows J vs time for the
lattice with N=50. L, the heat flow through the left end of the
lattice; R, the same for right end. Averaging over M =2000 samples.
The value of the stationary heat flow J(r=20)=0.0566 is also shown.
The langevin temperatures are Ty ,(1)=2 and 7 4(50)=1.

temperature profile and heat capacity. Modes localized close
to the lattice ends behave analogously, differing in a faster
contribution to heat capacity and temperature profile.

The time dependence of the heat flow calculated in
accordance with (33) is shown in Fig. 10. In spite of
very large relaxation times (for the considered length
N=50(T,)~ 10'%, see Fig. 4), the heat flow reaches its sta-
tionary state rather soon (at << 10%).

All these are of concern in the calculation of thermal con-
duction. Actually it is not necessary to wait when the system
reaches its true stationary state (see Fig. 5, where at ¢~ 10*
the temperature profile is very far from the stationary state)
to calculate the thermal conduction.

Below we shall use the Fourier law in its integral formu-
lation

S DD =Ti,0)

N ; (35)
and the accuracy of approximation (35) increases with the
growth of the number of particles in the lattice. We calcu-
lated the coefficient of thermal conduction x just according
to (35). All localized states with relaxation times with
7=10° were excluded from consideration as their contribu-
tion to thermal conduction is negligible.

The dependence of » vs the number N of particles in the
lattice is shown in Fig. 11. One can see the nonmonotonic
behavior of x: it has a maximal value at N=300. At smaller
values of N thermal conduction xoIn N. For larger values
the behavior changes qualitatively and the thermal conduc-
tion obeys the dependence x~N"% with @=0.27, i.e., the
thermal conduction converges to zero in the thermodynami-
cal limit. Recall that the following model is considered: a
harmonic lattice with random distribution of masses m;=1
and m,=1/2; heat bath—one Langevin particle with 77 ,(1)
=1. The calculation was made by two methods—*“direct” and
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FIG. 11. The dependence of thermal conduction on the lattice
length N (10<N<5000). Empty circles, calculation by the “ma-
trix” method. Empty squares, “direct” integration. Solid line, ap-
proximation xoN~%) for N>500. Inset, the same dependence in
semilogarithmic coordinates. The dependence x>In N is obvious
for N=300.

“matrix.” The role of parameters choice on thermal conduc-
tion will be considered in the next section.

A question was raised—is the heat flow a self-averaging
value in the thermodynamical limit or not? (See Fig. 18 in
[1].) The answer for this question is given by the value

M
S[IHN)] = oy /(I(N)),  (J(N)) =M™ 2 J(N),  (36)
i=1

where o‘iw) is the standard deviation for the heat flow; M is

the number of samples. If S[J(N)]— 0 in the thermodynami-
cal limit if J is the self-averaging value.
The value S[J(N)] for the heat flow is shown in Fig. 12. It
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FIG. 12. The dependence of self-averaging characteristic
S=0,/ K defined according to (36) on the number of particles N in
the lattice. Averaging over M =200 samples.
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FIG. 13. Computed dependencies of thermal conduction vs lat-
tice length N (N<1000) at different relation of masses. m;=1 in all
cases. Circles, m,=1/2 (the same as in Fig. 11); crosses, m,=1/5;
squares, m,=35.

is unlikely, according to Fig. 12, that the heat flow is the
self-averaging value.

There could be made a “natural” assumption that the
problems associated with the computation of vibrational
mode with extremely large relaxation times can be avoided if
weak fictitious damping is introduced for nonlLangevenian
particles in the lattice, analogous to that done in [31]. It is
expected that in this case the lattice rather quickly achieves
its stationary state and all necessary results can be obtained
with much less computational effort. But we have shown that
this idea fails, and results will be published elsewhere.

IV. AN INFLUENCE OF PARAMETERS VALUES ON THE
PROPERTIES OF THE MODEL

All results described above were obtained at the following
fixed choice of parameters: (i) uniform and random distribu-
tion of masses m;=1 and m;=1/2 in the lattice; (i) fixed
boundary conditions and only one (or two) extreme particles
as Langevin sources; (iii) in Langevin sources (FLg=§— )
they were set y=1; (iv) the lattice does not interact with its
surrounding. The natural question arises: How do the param-
eters’ choice influence the quantitative, and, probably, quali-
tative behavior of thermal conduction? In this section we
discuss these problems in more details.

A. Choice of masses

Other values of masses influence the results only qualita-
tively (see Fig. 13). The greater the mass relation, the less the
value of thermal conduction. But in the limit m,/m,— 1 one
should get the known dependence xoN [1].

B. Parameter y in Langevin forces

It was supposed [1] that the dependence of thermal con-
duction on 7y has the asymptotics J(y)—0 at y—0 and
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FIG. 14. The dependence of the thermal conduction on the value
of damping parameter 7y in the Langevin sources for the lattice with
N=50 particles. Averaging over M =5000 samples. Inset: the linear
dependence of x vs vy at small values of ¥(0.01<y=<0.1).

y— . Our results are in qualitative agreement with this sug-
gestion. The dependence of the thermal conduction vs pa-
rameter y changed by four orders of magnitude is shown in
Fig. 14.

C. Influence of substrate

Inclusion of the interaction with a substrate is reflected in
an extra term in (1)

N

1Y 1
H= 51221 m(i)vz(i) + 5,1?1

N
(DU HxG) + 2 g(D)x(i),
i=1

(37

and g(i), is the parameter of interaction (on-site potential)
depending on the particle number. Without loss of generality
one can set g(i)=g=const and the randomness included in

matrix U. The addition of an interaction with the ubstrate
changes the behavior qualitatively: the model becomes mo-
mentum nonconserving. Models of this type are known as
having zero thermal conduction in the thermodynamical
limit.

The dependence »x vs the lattice length N at different val-
ues of parameter g is shown in Fig. 15. The dependence
obeys the exponential law xxexp(—bN), and the growth of
parameter g results in an increase of index b. It means that
the considered model with the on-site potential is the ideal
thermal insulator in the thermodynamical limit.

D. Role of boundary conditions

In contrast to fixed boundaries where the dqgendence
xoc1/\N is expected, the diverging character »o VN is valid
for free boundaries [1].

At the analysis of the influence of the boundary condi-
tions we have changed the force constant of interaction k of
the interaction between the “wall” and the first and Nth par-
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FIG. 15. The dependence of thermal conduction on the param-
eter g (g=0.25,0.5,1.0). Averaging over M=5000 samples. Inset:
the same dependence in semilogarithmic coordinates (log;y k vs N
for g=0.5 and g=0.25).

ticles, i.e., we set U(1,1)=U(N,N)=1+k in (2), and k=0
corresponds to free boundaries.

The dependence of » on force constant k in the range
0=<k=10 is shown in Fig. 16. An exponential decrease of »
with the increase of parameter k is found.

The dependence of thermal conduction » vs the number
of particles for the case of k=0 is shown in Fig. 17. This
dependence obeys the predicted law o N [1] with very
good accuracy.

E. Number of Langevin particles and value of y

The model considered above is nonphysical in the sense
that the results are extremely sensitive to the choice of pa-
rameters of the heat reservoir (see Fig. 14 where the depen-
dence on parameter 7y is obvious).

0.9

084

0.7 4

10g,(x)

0.6 o

FIG. 16. The dependence of the thermal conduction » on the
parameter k, lattice interaction with boundaries. N=50, averaging
over M =500 samples. Inset: the same dependence for 0<k=<1.0 in
semilogarithmic scale, i.e., logy > k.
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FIG. 17. The dependence of heat conduction » the number N of
particles in the lattice (10=<N<700). Free boundaries, averaging
over M =100 samples.

It will be highly desirable to construct an “ideal” thermo-
stat where the results of thermal conduction would not de-
pend on parameters of thermostat. The Langevin thermostat
has two parameters: the number of Langevin particles and
the damping coefficient 7.

We consider now a lattice consisting of N particles inter-
acting with Nt Langevin particles, simulating the thermostat,
and attached to both ends of the lattice.

We hope that the physically reasonable limit can be ob-
tained by the following sequence of limiting transitions: ini-
tially the size of thermostat Np—o0, then the damping
v—0. The final limiting transition is N — .

We have chosen the simplest thermostat, the harmonic
lattice of unit masses, and two methods are suggested to find
the limiting value of thermal conduction with the increase of
the thermostat size Ny. It turns out that the thermal conduc-
tion tends to the asymptotic value, approaching it exponen-
tially with the increase of Ny. This is valid for rather small
values of y=0.5. In Fig. 18 the dependence of thermal con-
duction s on the number of Langevin particles Nt attached to
both ends (at y=0.02) is shown. The inset in Fig. 18
demonstrates the exponential decay of the difference
%(%0) — %(Ny) with the growth of Nr.

The second method is the generalization of expression
(34): for left Langevin sources,

Np
Y .
J=2 —=[1-T()] (38a)
j=1 m(j)
and for right Langevin sources,
2NN
= X 1), (38b)

J=NT+N+1 m(j)

where j numerates the Langevin particles, N is the number of
“free” harmonic particles, and Ny is the number of Langevin
particles equal for left and right ends. The addictiveness of
the contribution from every Langevin sources to the total
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FIG. 18. The dependence of the thermal conduction x the num-
ber Nt of the Langevin particles. N=50, averaging over M =100
samples, y=0.02. x() is the true asymptotic value at Ny— . In-
set: the exponential approaching to the asymptotic value () with
the increasing of the number of Langevin particles Nr.

heat flow is obvious from (38). Without the loss of generality
we set the temperatures of all left Langevin sources to 1, and
right sources to 0, i.e., Ti,(j)=1 for j=1,2,...,Ny and
T1,(j)=0 for j=N+Ng+1,N+Ng+2,...,N+2Nr.

We found that at the right “cold” end the actual tempera-
ture inside the Langevin thermostat decreases exponentially
with the number € (€=N+Np+j) of the Langevin particle
counted from the Nth harmonic particle to the right (see Fig.
19).

An important property consists in the fact that the slopes
of both approximating lines do not depend on the size of the
Langevin thermostat, i.e., the slope in the dependence

10
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Particle number in termostat

FIG. 19. The dependencies of the temperatures inside the right
thermostat on the number of particles in the Langevin reservoir. 1,
two almost indistinguishable curves for two samples with
Nr=100 and y=0.25; 2, the same as “1” for Nt=200; 3, two almost
indistinguishable curves for two samples with Nyt=50 and y=1; 4,
the same as “3” for Nt=100. N=100 in all cases. Dashed lines,
linear approximations in semilogarithmic coordinates. Inset: the de-
pendence of parameter B (see the text) on 7.
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In[T(€)] vs € is independent on Nt. The slopes are also al-
most independent on the sample (fluctuations are <2%). An
index B in the dependence T(£)=T(1)exp(—pB¢{) is propor-
tional to y and B=1.09y (see the inset in Fig. 19). Thus,
(38b) is nothing else than the geometrical progression.

The limiting transition Ny can be made by computing the
sum of geometrical progression in (38b). In the limit of small
v one can get that the value of thermal conduction is

J=Tim 27(1), (39)
y—0
where “1” is the first particle in the Langevin thermostat with
actual (nonLangevenian) temperature 7(1).

The existence of such a simple relation (39) opens the
possibility for the computation of the thermal conduction in
very large systems. The reason is that the computation of
temperature 7(1), and, hence, the heat flow, becomes the
much easier mathematical problem: it is necessary to find the
eigenvalues of tridiagonal matrix without damping.

For the solving of the next problem (finding the thermo-
dynamical limit N— ) it is necessary to find the dependence
of /B in (39) on the number of particles N. Our estimations
show that limy_,., y/8~1.3.

Thus, the computation of thermal conduction in very long
lattices (N> 10°) is reduced to the following steps: first, one
should be convinced in the final limit of lim,,_,, ¥/ 8 and find
this limit, second, one should calculate the temperature 7(1)
of the first Langevin particle in the thermostat. It can be done
by finding the eigenvalues of the tridiagonal matrix of the
dimensionality (N+2Np) X (N+2N7) a rather simple compu-
tational problem even for very large matrices. And finally
one should solve the problem on the dependence of the tem-
perature T(1) on the thermostat size.

V. CONCLUSION

In this conclusion we briefly summarize our results. The
mass-disordered lattice of particles interacting via harmonic
forces with the Langevin thermostat was thoroughly investi-
gated. We analyzed the dynamics, kinetics, and the thermal
conduction in this model. There were two mathematically
accurate methods developed which allowed us to increase
the number of particles in the lattice up to N=5000, where
the exact results can be obtained. Both methods are based on
the equations for the correlation functions.

The considered model has highly localized vibrational
modes with great relaxation times, and we have shown that
these times increase exponentially with the number of par-
ticles in the lattice. The method was developed which allows
us to calculate the relaxation times as large as =103, We
have proved that the stationary state is unique.

The thermal conduction has the nontrivial behavior on N
with the maximum at N~ 300. For N<300 the dependence
is «In N. For N>300 the asymptotic for the thermal conduc-
tion is x> N-¢, where for y=1 in Langevin forces, the expo-
nent aw~(0.27. Lattices with a greater number of particles
should be considered for the more accurate calculation of
index a@. We also demonstrated that » is not the self-
averaging value.
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The stationary heat flow achieves its stationary value
much faster compared to the achievement of stationary tem-
perature profile, as the localized modes do not contribute to
the thermal conduction. The computation of the heat flow
demands much less efforts compared to the calculations of
the stationary temperature profile.

An influence of parameter values was also thoroughly
analyzed. We showed that the thermal conduction tends to
zero in both limits: y— 0 and y— . The dependence of x vs
v is linear at small values of vy in accordance with [1].

Accurate results were obtained for the dependence of
thermal conduction on the parameter of interaction with sub-
strate, g. x decreases exponentially with the growth of pa-
rameter g at a fixed number of particles in the lattice. Bound-
ary conditions with the varying parameter k of the interaction
with walls were also considered. The exponential decrease of
the thermal conduction with the growth of parameter k was
found.

A mass-disordered harmonic lattice is a nonphysical sys-
tem in the sense that the computed values (heat flow, tem-
perature profile, and the thermal conduction) are extremely
sensitive to the values of parameter y and number of par-
ticles Ny in the Langevin thermostat. Our goal was to con-
struct a heat reservoir, where results would not depend on
these parameters. We found that the true thermostat should
consist of a large number of particles with very small damp-
ing, i.e., Ny—o and y—0. It turned out that there is a
simple method on how to find these limiting transitions.
First, the temperatures in the Langevin thermostat decrease
exponentially with parameter 8 with the number of Langevin
particles. It allows us to use very simple expressions to cal-
culate the limit Ny— . Second, there is a linear relation
connecting parameters 8 and vy, and it allows us to get the
next limiting transition y— 0. Thus, the suggested approach
opens a possibility to calculate the thermal conduction of a
very long (N>10°) lattice. Recall that everything stated
above is valid only for the disordered harmonic lattices with
the Langevin thermostat.

Some details of computations are presented in Appen-
dixes A—C.
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APPENDIX A: CALCULATION OF EXPANSION
COEFFICIENTS IN Eq. (29)

For the practical usage of Eq. (29) it is necessary to cal-
culate sets of complex eigenvalues {\;}, eigenvectors {Q,},
and expansion coefficients {c}.

PHYSICAL REVIEW E 73, 016701 (2006)

1. Eigenvalues and eigenvectors

At the numerical diagonalization of non-Hermitian matrix

A (10) two sets of values are calculated simultaneously:
imaginary eigenvalues w; and real inverse relaxation times
1/ T

The double-precision numbers represented on the com-
puter is limited by 14 digits. Therefore, if w;,~ 1, then the
precision in the calculation of 1/7, cannot exceed 107'4, i.e.,
the exact calculation of relaxation times is limited by
t=10'" (which is nevertheless several orders of magnitude
larger compared to the direct MD methods where times are
limited by = 108-10°).

In an attempt to use (29) directly, the major problem is
associated with the case of complex-conjugated roots when
Ag, :)\Zz, which could be a very small number equal to -2/ 7;

for highly localized states.

a. Increasing of the accuracy of the relaxation time calculation

Below for definiteness we consider the particular case
when Langevin sources act on two extreme particles of the
lattice, the first and the Nth. We also set y(1)=y(N)=7y. As
this takes place, there are only two terms in summation over
p in (29): with p=1 and p=N.

The order of precision of relaxation time computation can
be doubled. Namely, from the equation AQ=\Q (24), rewrit-
ten in coordinate representation for the kth vibrational state,
it follows:

m(i)X ()N =50 — 1) = 25,(0) + B (i + 1),

i=23,...,N—1, (A1)

and two terms —y\ X, (i) (for i=1 and i=N) should be added
to the rhs of (Al).

From this equation one can get (multiplying by complex
conjugated, summing and dividing real and imaginary parts)
an expression

L__ EOP+R@P
LR _

< (A2)
22> m(i)|5 ()2
i=1

There stands the value of the order of unity in the denomi-
nator (as the eigenvectors are normalized to unity). Then, if
the eigenvector (more precisely, amplitudes of the kth vibra-
tional states) is known with the precision ~107!#, then the
inverse relaxation times can be calculated with the precision
~10728. It means that the usage of a “double precision” num-
ber representation allows us to compute the dynamics of dis-
ordered systems for times 7= 10?%, many orders of magni-
tude larger than is possible in the MD simulations.

Note that expression (A2) is sufficient to calculate the
heat flows and temperatures at the lattice ends. Really,
though this expression cannot give the correct values of 7,
for highly localized states [as their boundary values X;(1) and
Xi(N) cannot be calculated with the necessary level of accu-
racy], these highly localized states give negligible contribu-
tions to the heat flows.
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b. Increasing the range of relaxation times up to 7=103"

We are interested now in highly localized states with great
relaxation times, and our goal is to accurately estimate the
temperature profile. We know an approximation to the eigen-
vector @, and eigenvalue N\ for the kth localized state. Prac-
tically one can consider \; a purely imaginary value as its
real part is a very small value. It is necessary to find a very
small amplitude of x;(1) and substitute it in (A2), keeping in
mind that we construct the eigenvector with accurate values
at the lattice ends. To do this we use Eq. (A1), which is
nothing other than the recurrent relation for X;(i).

Let us start from the initial boundary condition X;(0)=0,
X(1)=1 for some kth vibrational mode with known eigen-
value \; (an arbitrary initial condition can be chosen). Then
recurrent procedure (A1) continues successfully until the
largest amplitude Xx;(L) at some particle L is reached.

After that this procedure repeats from the right side of the
lattice and continues to the left until the same Lth particle is
reached. Then both (“left” and “right”) solutions are joined at
the Lth particle, and the solution is normalized to unity. Fi-
nally one gets the eigenvector X, with excellent accuracy and
the expression (A2) allows us to calculate very large relax-
ation times.

The greatest values of 7are <10°% (largest number avail-
able on PC with double precision).

2. Expansion coefficients c;

The next problem is to find the expansion coefficients c;
in (29) with necessary accuracy. These values can be ap-
proximately estimated as c¢;~X(1) and, as was shown
above, X;(1) can have extremely small values. Thus, because
of limited accuracy of numerical calculations, direct solving
of the linear system (28) is incorrect as the corresponding
matrix G is ill defined.

It is reasonable to define the matrix “quality” through the
matrix condition number as cond(G)=||G|*|G™!. and ||G]|
means some norm of a matrix. Practically it is more conve-

nient to use the rcond(G)=1/cond(G). If rcond(G) ~ 1 then

matrix G is well defined; and rcond(G)<1 in the opposite
case.

If Eq. (28) is used directly then rcond(G) are 4.9 X 1073,
14X 1073, ~107°, and ~107" for N=100, 300, 500, and
1100 particles in the lattice. Thus, numerical accuracy cata-
strophically fails with the increasing number of particles.

We suggest a method which improves the accuracy of the
calculation of expansion coefficients. Consider Eq. (28) once
more

2N

2 Clekl(i) =6

k=1

(A3)

Our aim is to derive a more accurate equation for coefficients
¢;- Let us introduce a symmetric matrix B(k,,k,) which is the
scalar product of eigenvectors |Q; ) and |Q, ) weighted by

mass distribution M (hereafter we use “quantum” notations
for vector/matrix operations)
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M 0
Blkik) =\ Qi || . . ]|Qx (A4)
0 M
Later we shall demonstrate that the matrix (A4) is defined

much better than the matrix (28). Equation (A3) for coeffi-
cients ¢, can be rewritten as

W
2 Blkyky)e, =m(1)Qy (1). (AS)
ky=1

As the eigenvector satisfies the relation |Q,)={\/%;).[X,)},

one gets

Blky k) = (14N N )y [M ). (A6)

Now we need to calculate the scalar product (xkl|M ). The
immediate summation in an attempt to calculate this expres-
sion results in bad accuracy and we suggest a more accurate
method for its calculation.

Write two equations (25) for different modes k; and k,

NG R == Ul ) = N TR )

N[, = — UlRy,) = N L[, (A7)

Multiply (from the left) first by <xk2|M| and second by

(xkl|M | and subtract the first result from the second one.

After simple calculus one gets the necessary expression for
the matrix B(k,,k,)

X, I [X,)

. (A8)
)\k] + )\k2

B(ky,ky) =—(1+ )\kl)\kz)

Matrix B, calculated according to (A8), is defined much
better. Its matrix condition numbers are 3.02X 1074,3.27
X107,1.31X107,1.16 X 107 for N=100,300,500,1100.

Though rcond(B) are rather far from unity, rcond(B) does not
depend on the number of particles. In the limit y— 0 matrix

<ikl|M [X,) is exactly the unit matrix as the eigenvectors are

orthogonal with the weight M.

An advantage of the calculations of the expansion coeffi-
cients ¢, according to (A5) with matrix B(k,,k,) defined by
(A8) as compared with (28) is illustrated in Fig. 20. One can
see that the improved method of this section gives results
coinciding with theoretical predictions. Results obtained us-
ing (28) become much worse with the increasing number of
particles N in the lattice.

APPENDIX B: PERTURBATION THEORY FOR FINDING
EIGENVALUES AND EIGENVECTORS

The numerical solution of Eq. (24) for finding the eigen-
values and eigenvectors is a very “expensive” operation (in
the sense of necessary computation time and memory). We
suggest the method essentially accelerates this procedure.

For more easier perceiving we omit the subscript numer-
ating the eigenvalues and eigenvectors, and make the re-
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FIG. 20. The comparison of the temperature profiles for the
lattices with N=150 (thin solid line), N=200 (dotted line) particles
with equal temperatures of the Langevin sources Tp,(1)=Tp,(N)
=1, calculated according to (28). The thick solid line is the exact
result [7(i)=1] and the expansion coefficients were calculated ac-
cording to (A5).

placement |M~"2[%)— [%). Then Eq. (25) will have the form
N2x) = — | Ulx) — AT, (B1)

where U=(M~"2|U|M~"2). As the zeroth approximation we

chose Eq. (B1), where the term with damping I" is omitted,

()2 = - | T1x%, (B2)

where |x’) and \° are zeroth approximations. Note that nu-
merical procedure (B2) is very fast as it solves the tridiago-
nal matrix. Note also that the Rayleigh-Schrédinger pertur-
bation theory is not applicable in the considered case because
of the semidegeneracy of eigenvalues (for large lattices ei-
genvalues lie very close).

We generalized the known method of back iterations with
the shift developed for the linear eigenvalue problems

Ax=M\x for the case of the quadratic in the \ problem (B2).

The iteration procedure is the following. Choose random
vector |£) and on the nth iteration step for the known eigen-
value \" the next approximation for the eigenvector |x"*!) is
found as the solution of the following linear system:

(= TN = 2Dy =[0). (B3)

In an assumption that the eigenvectors are orthonormal-
ized, we get the next approximation for the eigenvalue \"*!

()\n+l)2 — <xn+1| _ [7_ )\nf*|xn+1>- (B4)

But it turns out that the convergence of the suggested method
is too slow. We suggest an improved approach.
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IOQ1O(tcalc)
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log,,(N)

FIG. 21. Comparison of calculation times f.,. for lattices with
N=100-2000. Empty circles, times of calculation in seconds using
Eq. (24). Solid line, approximation by #.,.=107’N3? sec. Triangles,
times of calculation in seconds by the method described in Appen-
dix B with approximation 7., =10"71“N?8 sec. For large lattices the
gain is more than 30 times. Computations were performed using a
PC (3000 MHz).

Multiplying unperturbed Eq. (B2) by (x"| and Eq. (B1) by

(x9, substracting the results from each other, and taking into

account the symmetry of matrix U, one gets the square equa-
tion for the eigenvalue \"*!

<x0|f‘|x”)

)\n+l 2+ )\n+l
( ) <X0|X">

-(\%2=0, (B5)

and the root with definite sign (say, positive) should be cho-
sen in every case. This method allows us to get new eigen-
values and eigenvectors, and replaces the described above
recurrent procedure (B4).

The method described above was completed by the Ar-
noldi method, based on the Krylov subspace [34], allowing
us to compute only a few eigenvalues, which belong to one
or another part of the spectrum, e.g., eigenvalues with largest
(smallest) real (imaginary) parts. Note that the Arnoldi
method is the generalization of the Lanczosi method for un-
symmetrical matrices.

As we are mainly interested in eigenvalues with least real
parts, then the Arnoldi method was adjusted to search usually
~10 lowest eigenstates.

Additional reduction of computational time was achieved
by the fact that for N= 1000 the total number of vibrational
states giving contribution to thermal conduction constitutes
approximately only one-third from the total number of vibra-
tional states. It allows us to considerably reduce the dimen-
sionality of matrix B(k;,k,) at solving the linear system of
the equation for c,.

The comparison of times of computation by solving Eqgs.
(24) and by methods described in this appendix is shown in
Fig. 21. We have compared the method of this appendix with
exact results, and found that the total error does not exceed
2% because of some numbers of unfound states.
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APPENDIX C: TEMPERATURE PROFILE IN THE LIMIT
v—0

Here we shall demonstrate how our results (29) are trans-
formed in the limit y— 0. We are planning to obtain the
results of works [37,38], where this limit was studied.

For clarity we again consider the case of only one Lange-
vin particle with Tj,(1)=1. As we consider the stationary
state (1— o), time variables are omitted. The stationary tem-
perature profile [7(i) =m(i){v?(i))] has the form

riy=- 2o 5

- mz(l) e )\kl )\szk (l)ka( )Cklckz

(C1)
We are planning to make the limiting transition y— 0. As the
expression (C1) contains many terms and all of them depend
on v, they will be considered separately.

(1) The limit of |Q;) at y—0. At y—0 the equation for
[x;) (25) transforms to the equation for eigenvalues of sym-

metrical and real matrix U
NeM ) = - U, (C2)
and real eigenvectors [¥;) are orthonormal with weight M

e M) = 2 % (Dm)T (1) = 8, (C3)

Note, that in (C2) A?><<0. It also means that there are two
complex conjugated vectors |Q;) and |QZ) for every real vec-
tor [x;)

(C4)

0, =

101 =(

and w,= V—)\i.
It is convenient to rearrange 2N vectors |@,) in such a
way that last N vectors be complex conjugated to first N

vectors. Let us define matrix Q, constructed in such a way
that the matrix Q with rearranged vectors |Q,) has the form

~ t}_(() - i)?ﬂ
o={"" T (C3)
X X

where the NX N matrices Q(i,k) and X(i,k) are equal to
w0y and %(i). In the limit y— 0 vectors |Q,) are defined by
(C4), and vectors [x;) by (C2).
(2) The limit of c¢; at y— 0. Equation (28) for coefficients
¢, can be rewritten in the matrix form
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-l o

Where for the convemence we denoted ck—ck,k N, and
ck,k>N We have ¢?=—c' [it follows from the equation
Ekxk(ck+ck) 0]. Then the equation for ¢! is

E 5(D) Qiwgey) = 8y (C7)
k=1

Multiplying this expression by vector [%;) (with weight M)
and using the orthonormality of vectors |x;) [see (C3)], one
gets

1
k= %)xk(l)

(CB)
and our previous suggestion that ¢, ~X;(1) is supported.

(3) The limit of fraction y/ (N +X;) at y— 0. In the limit
v—0 the imaginary parts of eigenvalues (w;) have finite
values defined by (C2). But the real parts (1/7;,) tends to zero
(ccy). Therefore, it is obvious that the nonzero answer in the
limit y—0 could be obtained only if )\k —)\ . Then in the
denominator there stands the value Ai, +)\k —2 Re A, and
this value is of the order 7.

From the equation for real parts of eigenvalues (A2) and

taking into account that (¥,|M|%,)=1 one gets
(D +X (N)] !

Expression (C9) is accurate if k; and k, correspond to com-
plex conjugated vectors, otherwise this limit (at y—0) is
null.

(4) And the final step. In the double summation in (C1) for
T(i) there will “survive” only terms with xkl:x,’ﬁz and the
sum becomes over one variable. In the expression (C1) for
temperatures we (1) substitute the expression for fraction
(C9), and (2) make transformation to the summation from 1
to N as complex conjugated values are met twice. As a result
an additional multiplier “2” arises,

YO, +N) =~ (5 (9)

N

10D,
i )/; [F(1) +5(V)]

Substituting expression (C8) for ¢ in (C10), and expression

4TLg(l)
2(1

T(i) = (C10)

for Qy()=iwyx(i); i=1,2,...,N, we get
N
5 (1)56)
T(i) = Ty o(1)m(i )E —(1)+_2(N) (C11)

To get the result presented in [37,38], one should make the
substitution \m(i)x,(i) — e (i).
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